If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2-4d-20=0
a = 1; b = -4; c = -20;
Δ = b2-4ac
Δ = -42-4·1·(-20)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{6}}{2*1}=\frac{4-4\sqrt{6}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{6}}{2*1}=\frac{4+4\sqrt{6}}{2} $
| 0.9b=3.15 | | -1.6x=80 | | 64+4x=228 | | 3(6+2x)=6 | | 4.12x=6.8 | | 3(x+2)=-x+14 | | 0.8a=6.9 | | 23.00=16.00+x | | 0.6m=5.05 | | Y=7x-4;(4,22) | | -5+5x=10x+20 | | x/35=88 | | -2(u+9)=4u+18 | | 0=x2+3x-10 | | -40=9-6s | | 15m+4-8m+2-3m+4=2m-4+5m-3+3m+4 | | 2/9s=60 | | 5/6n=3 | | 2/9s=20 | | x-1÷x-2=x-3÷2x-3 | | 10x+5×=55+7×+4x=40 | | 14x=42^2 | | 5.1+w/7=-6.1 | | x3+7x2+16x+12=0 | | 568y=y | | -15.2=f-(-2.6) | | 4x-4.5x=2 | | C=0.25x+325 | | 76x+68x=80 | | 9=12x-4x^@ | | -9a-6=3a+18 | | 76x+68x=8 |